Materials	μ_s	$\mu_{\mathbf{k}}$
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Rubber on concrete (dry)	1.0	0.8
Rubber on concrete (wet)	0.3	0.25
Wood on wood	0.25-0.5	0.2
Glass on glass	0.94	0.4
Teflon on Teflon	0.04	0.04
Teflon on steel	0.04	0.04
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow	0.10	0.04
Metal on metal (lubricated)	0.15	0.06
Ice on ice	0.1	0.03
Synovial joints in humans	0.01	0.003
Very rough surfaces		1.5

- A copper block with a mass of of 82kg is pulled along a steel floor for a distance of 91.44m. The force exerted on the cable is 600. N. The block is then released and allowed to slide.
 - Draw a force diagram on the block before and after the cable is released

Ff= 82.10. (,36) = Z95N 82kg

What is the amount of work done by the cable? 600.91.44m = 54864J

- d. What is the work done by friction?

 TG = M.G. U. Cl. 82.10., 36.91.44 = 26993 J TE=m.g.u.d
- e. What is the blocks speed at the 91.44m mark?

E-TE= ______ 27870 = 12mu2 V= 26m/s

f. What is the power output of the cable at the 91.44m mark?

Energy/time = 54864

g. How far will the block slide

Needtime

Xt = X; +Vit + Pat 2

Xt = X; +Vit + Pat 2

82kg

91.44=0+0+/2(3.7)+2

